An important facet of contemporary bioanalysis is to develop techniques
and methodologies that expedite the process of proteomics research.
Mass spectrometry (MS) has emerged as one of these core techniques and
it is a promising diagnostic tool for identifying biomarkers related to
human diseases. A widely accepted approach in this field is to separate
protein components from clinical specimens (such as humoral fluids) by
one- or two-dimensional gel electrophoresis, followed by in-gel
proteolytic digestion and then MS identification. Alternatively, the
entire protein mixture can be digested either enzymatically or
chemically, and the resulting complicated peptide mixture is submitted
to liquid chromatography (LC)-MS/MS analysis. In the latter approach,
removal of physiological and processing contaminants such as salts,
detergents and chemical reagents is usually required to prevent adverse
interference of these compounds in proteolysis. Moreover, concentration
of diluted sample solutions is needed prior to ensuing sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and MS analyses.
However, the commonly used procedures for protein purification and
concentration such as trichloroacetic acid (TCA) precipitation and
dialysis with a molecular size cut-off membrane are generally
time-consuming, incomplete in removing contaminants, and plagued with
high sample loss to membranes or the walls of containers. Furthermore,
the presence of high-abundance proteins often spoils the MS
identification of minute components and, therefore, additional steps
for depletion of these abundant proteins have to be undertaken.
Solid-phase extraction (SPE) is a popular solution to overcoming these
difficulties. Hydrophobic particles and chemically modified matrixes
are typical adsorbents used for such purpose. However, the extraction
capabilities of hydrophobic surfaces have been shown to deteriorate
greatly in solutions containing more than 0.02% SDS. MS analysis of
trypsinized peptides from these extracted proteins revealed less
information than proteins concentrated from SDS-free solutions.
Moreover, a significant fraction of peptide fragments after the tryptic
digestion was trapped in the porous material, resulting in low peptide
recovery efficiency.
The "solid-phase extraction and elution on diamond (SPEED)" platform
provides speedy extraction of soluble proteins, membrane proteins,
viruses, and other proteinaceous compounds. Compared with conventional
methods, the platforms facilitate not only purification and
concentration of intact proteins but also their ensuing analysis of
enzymatic digests by SDS-PAGE and matrix-assisted laser
desorption/ionization (MALDI) MS without prior removal of the
adsorbent. One-pot work flow involving reduction of disulfide bonds,
protection of free cysteine residues, washing off residual chemicals,
and proteolytic digestion of adsorbed proteins can be performed
directly on the particles.